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Abstract—We propose a new approach to circuit routing by
modeling it as a sequential decision problem and solving it in
MCTS with DRL-guided rollout. Compared with conventional
routing algorithms that are either manually designed with do-
main knowledge or tailored to specific design rules, our approach
can be reconfigured for nearly any routing constraints and goals
without changing the algorithm itself because the AI agent
explores solutions in a general search strategy. Experimental
results on both randomly generated circuits and popular open-
source hardware projects show that our method achieves 33.3%
higher success rate than traditional A*-based approach.

Index Terms—Circuit routing, Deep reinforcement learning,
Monte Carlo tree search

I. INTRODUCTION

In printed circuit boards (PCBs) and integrated circuits (ICs)

design, routing is a major step to place metal wires to achieve

expected connectivity of pins of all nets without violating

design rules [1]. A correct layout of such wires is vital to the

functionality and performance of the circuit. Circuit routing is

computationally expensive and challenging. A PCB, such as

the motherboard of a smartphone, can easily contain thousands

of pins and ten layers, making manual design extremely time-

consuming [2].

Due to the complexity of circuit routing, existing approaches

typically divide it into two stages: first global routing and

then detailed routing [3]. Global routing routes on large circuit

blocks, called G-cells, with relaxations on many constraints,

while detailed routing generates wires of proper shapes and

positions based on results from global routing. However, the

two stages do not always couple well. For example, it is

difficult for the wire density in global routing results to

match the routability of the downstream detailed router [4].

The miscoupling of the two stages becomes more profound

as design rules evolve rapidly [5]. The distinction between

the two stages also results in complex Electronics Design

Automation (EDA) software that is difficult to maintain and

evolve coherently.

In addition, routing algorithms are dominantly manually

crafted based on domain knowledge. Although laborious, man-

ual updates are always needed when new design constraints

and goals arise.

To address the above problems, we propose an end-to-end

and general routing approach that combines Monte Carlo tree

search (MCTS) with a policy learned via deep reinforcement

learning (DRL). As a powerful tool for the sequential decision,

MCTS [6] takes discrete actions, one at each time, to build

a path from the initial state to the terminal, and repeats such

path generation for multiple iterations with an efficiency much

higher than brute force to explore different solutions. The more

it iterates, the closer it is to the optimal solution. It has been

widely used to achieve computer’s human or superhuman level

play of games such as Go [7], chess, and shogi [8].
Inspired by its success, we view circuit routing as a se-

quential decision process that expands a path by adding a

vertex (or edge) onto a grid graph in each step, resembling

placing a stone in the game Go, which is suitable to be solved

by MCTS [6]. However, the search space of routing is too

large for vanilla MCTS that uses random rollout. To better

guide the search process, we use DRL to train a policy and

combine it with a backtracking algorithm to guide the rollout

of MCTS, and propose a path pruning mechanism to reduce

the wirelength further.
Unlike the two-stage approaches [3], [4], our DRL-MCTS

routing approach is end-to-end, free from the coupling prob-

lem. Furthermore, it does not require domain knowledge nor

specialized heuristics. It can easily adapt to different design

constraints and goals without changing the algorithm itself.

Hence, it has lower implementation and maintenance costs,

and the computer can improve its skills as it routes more

and more circuits. Experiments on both randomly generated

circuit layouts and popular open-source hardware projects

show the effectiveness of the proposed algorithm. The major

contributions of this paper are listed as follows:

• An end-to-end and general approach to circuit routing,

free from the coupling problem in the conventional two-

stage routing paradigm, reconfigurable for nearly any

routing requirements without changing the algorithm it-

self, independent from human domain knowledge.

• Backtracking and DRL-guided rollout for MCTS.

• A path pruning mechanism for reducing wirelength.

• Experiments on randomly generated and real-world cir-

cuits demonstrate our approach’s superiority over the A*-

based method, vanilla MCTS, and DRL in routing.

II. PROBLEM STATEMENT

Our circuit routing approach starts from constructing a

graph G = (V,E) via sampling vertices and edges on a

uniform Cartesian grid. All the intersections on the grid form

the set of vertices V . Pins of nets and obstacles (i.e., a non-

routable region such as a drill hole or clearance/courtyard zone
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of a pin) are at the intersections of the grid, hence also in V .

For every vertex v1 ∈ V \O and each of its 1-hop neighbors

v2 ∈ V \O, an edge e = {v1, v2} is added into E, where O is

the set of obstacles.

A routing problem is, given a graph G = (V,E) and a set of

k nets N = {N1, . . . , Ni, . . . , Nk} (Ni ⊆ V ), to find a path Pi

for each net Ni ∈ N such that Pi∩Pj = ∅ for any two distinct

paths Pi and Pj . A routing problem is unsolvable, if there

exists no solution for any net. In this paper, each net contains

only two pins because a multi-pin net can be decomposed

into multiple two-pin nets easily using a rectilinear Steiner

tree (RST) [9].

III. METHODS

A. Overview

We model circuit routing as a sequential decision problem.

For every net, a path is constructed from one of two net

pins, expanded by one edge for each step until reaching the

other pin. A special variable h, representing the head of

the path under expansion, is tracked. At each step (Fig. 1),

neighbors (excluding those already visited, obstacles, or pins

in other nets) of the head h are evaluated, and one of them is

picked as the new h from which the path expansion continues.

Similarly, in the game Go, the AI player determines the best

grid intersection to add a stone at each of its turns.

Fig. 1: Path expansion in 2D space from � to ●. ◇ indicates

the head at each state. Action choices are arrows in gray. For

multi-layer routing, just add two more actions to expand a path

perpendicular to layers.

B. MCTS approach for routing

We formulate the routing problem as an MCTS problem [6]

consisting of four following key components.

1) States: A state s is a collection of the graph G, the set

of nets N , the index of the net under connecting, the head h,

the target pin, and all paths constructed so far.

2) Actions: At each state, the agent chooses an action a
from the action set to expand the path to a direction. For

example, four orthogonal actions in 2D space: up, down, left,

and right (Fig. 5).

3) State transitions: Because the MCTS sequentially con-

nects nets, two states differ only in the head, the target pin,

and constructed paths. In this paper, the actions expanding the

path to a non-routable region and the target pin are defined

as illegal action and connection action, respectively. The state

transition rules are:

(a) Initially, the head h is a randomly chosen pin of an

unrouted net n, the target is the other pin of the net,

and the path Pn = ∅.

(b) If the path is expanded to a node in the routable regions

(except the target pin), then the head h is updated into

the newly expanded node, and the path Pn is updated

accordingly.

(c) If the agent takes an illegal action or a connection action

from current state st, then the next state st+1 is the

terminal state.

4) Reward: In MCTS algorithms, reward is a function of

the terminal state, which is determined by the path of current

net in our problem. Therefore, we propose the following

reward function.

r(P ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−αMT ∣Nu∣ − βMT ∑
N∈Nc

dN − LMT , if P connects

the net,
−µ, otherwise.

(1)

where Nu is the set of unrouted nets who become unroutable

due to the path P , Nc is the set of unrouted nets whose

routability is not changed by the path P , dN is the length

difference of the shortest paths of net N before and after

adding P to the circuit, αMT and βMT are the weights for

each term (the suffix “MT” denotes the parameter is defined

for MCTS), µ is the penalty for a failed routing, and LMT

is a user-defined loss for their other design rules and goals.

Note that LMT can be as simple as the total wirelength and

could also cover other factors such as signal latency, EMC

requirements, or signal length difference.

The first two terms of Eqn. (1) are regularization terms.

They refrain the agent’s goal from being over-optimized such

that some nets become unroutable and/or the paths of some

nets are stretched too long.

C. DRL-based policy training

In this paper, we use DRL to learn a policy to guide the

search of MCTS. DRL policy cannot route the circuit directly

because it only outputs an action distribution, the probability

of successfully connecting a net by taking each candidate

action. This is demonstrated by the experiments in Sect. IV-A.

Therefore, a search mechanism such as MCTS is still needed

to try on those actions to form a path.

Similar to an MCTS problem, an RL problem also has

four key elements: states, actions, state transitions, and re-

ward [10]. Note that in RL community, a state s is embedded

into an observation o as the input to its policy function. States

and actions of our DRL problem are similar to those in MCTS

defined in Sect. III-B. The only change is that each action in

DRL is embedded as a one-hot vector. State transitions and

the reward are defined as follows:

1) State transitions: To steer the DRL agent to avoid

creating paths that make unrouted nets unroutable, a terminal

state is reached in DRL only when the DRL agent finishes

connecting all nets (some of them can fail and get a penalty).

In this way, the agent is guided to learn a policy that can

successfully connect all nets to get the highest reward. DRL

needs one more transition than MCTS, which is if the agent

takes an illegal action or a connection action and the current

net is not the last one to be routed, then switch to the next net

in line and start from rule (a) in Sect. III-B3.
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2) Reward: The reward is defined as a function of the

current state and the chosen action:

R(s, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αRL∣Na∣ − βRL ∑
N∈Nb

zN − LRL, if s
′

is a ter-

minal state,
0, otherwise.

(2)

where Na is the set of nets that successfully connected, Nb

is the set of nets whose path is expanded to a non-routable

region, zN is the Manhattan distance from the last node of the

path of net N to the target pin, αRL and βRL are the weights

for each term, LRL is a user-defined reward function for their

circuit design goals like LMT in Eqn. (1), and s
′

is the next

state of s after taking action a. The first two terms under the

first condition aim at encouraging each path to be expanded

to the target pin or a region close to the target pin. The DRL

agent will get a higher value when more nets are successfully

connected or the last nodes of paths are closer to the target

pins.

In this paper, we adopt one of the most popular pol-

icy optimization approaches, Proximal Policy Optimization

(PPO) [11], to update the policy. Compared to other policy-

based methods such as REINFORCE [12], and TRPO [13],

PPO is simpler to implement, converges faster, and has better

sample complexity [11].

D. DRL-backtracking rollout

To further reduce the search space of MCTS, we use the

DRL policy to guide a backtracking search as the rollout

of MCTS. In vanilla MCTS, all rollouts are independent.

Although two lengthy rollouts may share a great part of their

paths, the expensive search on the shared part needs to be done

twice. To improve search efficiency, we introduce backtracking

into the rollout stage (Fig. 2). The rollout will not stop after

reaching a failed terminal state. Instead, it backtracks to the

previous state and chooses another action. In this way, the

previous expensive steps will not be repeated and a connection

is guaranteed if it exists.

Fig. 2: Rollout with a backtracking mechanism.

Note that the output of the DRL policy contains illegal

actions, which the MCTS agent should not take. To solve this

problem, we change the probabilities of illegal actions to 0

and normalize the legal ones using their sum.

E. Path pruning

Although the DRL-backtracking mechanism significantly

enhances the connection rate and reduces the search space

of MCTS, a path can still contain some redundant parts,

i.e., unnecessary detours to the targets. To prune paths, we

examine each node pair on a path and replace the original

path connecting the two nodes by a shorter and straight path

if it exists and the area bounded by the original and shorter

paths does not contain any pins of other nets. Note that the

second condition is to check if the new path will change the

way of other nets’ connection compared with the original one.

Fig. 3 shows an example of path pruning.

Fig. 3: An example of path pruning. The black solid line

denotes the original path of net 1. The gray and black dashed

lines are the shorter and straight paths to connect A and A
′
,

and B and B
′
, respectively. The gray one cannot replace the

original path because one pin of net 2 is in the region bounded

by the closed path (A,C,C
′
, A

′
, A).

.

Our DRL-MCTS routing approach is summarized in Algo-

rithm 1.

Algorithm 1: DRL-MCTS algorithm

1 Input: an initial circuit board B = (G,O,N ,P), DRL

policy π(a∣s)
2 Hyperparameters: number of MCTS iterations T
3 for n ∈ [1..k] do

4 Generate an initial state s0 from B for net Nn.

5 Create root node v0 with s0
6 v ← v0, s ← s0.

7 Pn = ∅.

8 for t ∈ [1..T ] do

9 Update v and s by MCTS selection and

expansion.

10 Search a path Pt using π(a∣s)-guided

backtracking search from state s.

11 Prune Pt.

12 Pn ← Pn ∪ {Pt}
13 Backpropogate r(Pt).

14 end

15 P ← P ∪ {argmax
P∈Pn

r(P )}

16 end

17 Return P .

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, our proposed method is examined on both

randomly generated routing problems and real-world circuits.

We further show that our method can accommodate different

routing scenarios without changing the algorithm itself.

A. Our approach vs. baselines

Our method is a general framework that can be applied

to a great variety of circuit routing needs. To help analyze

Authorized licensed use limited to: Iowa State University Library. Downloaded on October 04,2022 at 03:32:18 UTC from IEEE Xplore.  Restrictions apply. 



the result, we pick a simple but representative scenario to

compare it with baselines. In this scenario, the circuit is single-

layer, only 90-degree bends are allowed (i.e., four orthogonal

actions: up, down, left, and right), and the only design goal is

to minimize the total wirelength. To minimize the total length,

the user-defined rewards for MCTS and DRL are defined as

LMT = 0.1LP and LRL = 0.1LP , respectively, where LP

and LP are the lengths of a path P and all paths routed in P ,

respectively. Accordingly, the observation o for DRL is defined

as a 4-dimensional vector containing the position of the head

(first two elements) and its horizontal and vertical distances to

the target pin (last two elements). All the parameter settings

for PPO and MCTS are listed in Table I.

TABLE I: List of hyperparameter values.

Parameter Value Parameter Value

Hidden layers 2 Discount (γ) 0.99

Neurons for each layer 32 Batch size 50

Activation function ReLU GAE parameter (λ) 0.97

Learning rate 1 × 10
−4

Clip ratio 0.2

Entropy coefficient (ec) 0.1 PPO epochs 3000

Samples per epoch 1000 Target KL 0.01

αMT 10 βMT 0.1

αRL 20 βRL 0.5

µ 100 Exploration constant (C) 5

MCTS iterations 500

One hundred randomly generated, routable single-layer cir-

cuits on a grid of 30×30 are used as the testbed. The number of

nets for each circuit is randomly generated, and the maximum

is 10. Two kinds of obstacles are generated: rectangular chips

of random sizes from 2×2 to 7×7 and random scatter obstacles

of size 1 × 1. Each circuit has two to four chips placed at

random locations. A non-chip vertex has a one in 15 chance

to become a scatter obstacle. The location of each net pin is

randomly chosen around chips.

The baselines are traditional sequential A* routing [14],

routing based on the vanilla MCTS, and routing based on PPO.

They share the same hyperparameter values with our approach

listed in Table I.

Successfully routing all circuits, our approach outperforms

all baselines (Table II). Sequential A* solves 75 circuits or

75%. It could make some nets unroutable by pursuing the

shortest path for the current net. PPO and vanilla MCTS fail

to route any circuit before timed out. A DRL policy only gives

a probability for each action to successfully lead the path to

the target but does not guarantee that. The search space is too

large for MCTS to find a solution within an applicable number

of iterations.

Table II also reports the wirelengths of our approach and

sequential A*. Because sequential A* can solve 75% circuits,

the wirelengths in the table are the average values for the 75

circuits that both our approach and sequential A* can solve.

Our approach generates paths that are 0.5% longer than that

of sequential A*. The DRL and MCTS agents can learn a

TABLE II: Success rate (%) and average wirelength (grid

units)

Our approach Sequential A* Vanilla MCTS PPO

Success rate 100 75 0 0

Wirelength 140.67 139.95 - -

different but longer path from the A* in some cases to make

it more possible for other nets to be connected later.

B. On real-world circuits

The most exciting part of the experiments is testing our

approach on real-world circuits. This study selects the top

30 KiCAD (a de facto PCB design suite for open-source

hardware projects) projects on GitHub ranked by the number

of stars. The routing problems for these projects are formulated

according to our problem settings in Sect. II. Specifically, for

each PCB file, we randomly select either the top or bottom

layer to make a one-layer PCB and convert it into a grid with

a resolution of 0.5mm to have an appropriate density of circuit

components, e.g., the density in Fig 4. For each grid, we crop

it at the center with the size of 32×32 to generate a test circuit.

Problems that are not solvable in a single layer are excluded,

resulting in 14 problems left with guaranteed routability.
All real-world circuits can be successfully routed by both

our approach and the sequential A*. Our approach outperforms

the sequential A* with a 102.7 versus 106.7 grid units of

wirelength because paths of some connected nets stretch

the paths of unrouted ones while using the sequential A*

approach. Fig. 4 shows the routing results for one of them.

In this example, the circuit contains 15 nets, and all nets are

connected with a total wirelength of 236.
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Fig. 4: Routing result of a simplified real-world circuit.

C. Flexibility analysis

As mentioned earlier, one advantage of our approach over

existing solutions is that the algorithm is reconfigurable for

nearly any routing requirements without changing the algo-

rithm itself. To meet a new design need, only the problem

formulation parameters, such as the reward function or the

actions, need to be changed. Here we will use one example

to show how to reconfigure the routing needs and achieve

different results on the 100 generated test circuits.
Up to this point, in this paper, bends are 90-degree. Relaxing

the bends to 45 degrees can often result in shorter paths

Authorized licensed use limited to: Iowa State University Library. Downloaded on October 04,2022 at 03:32:18 UTC from IEEE Xplore.  Restrictions apply. 



than those with 90-degree bends. To reconfigure for 45-degree

bends, we just need to add four diagonal actions on top

of the four orthogonal ones, and embed them using three

legal directions (Fig. 5). This change requires the observation

definition to be revised as well. The new observation is defined

as a 6-dimensional vector, the first four of which are the same

as that in the 90-degree bend case. The fifth and sixth elements

are the x, y coordinates of the previous node on the path.

Accordingly, the number of hidden layers and neurons for

each layer of the policy network is changed to 4 and 64,

respectively. Other settings are the same as those of the 90-

degree bend case.

Fig. 5: Legal (black arrows) and illegal actions (gray arrows) at

the head (●) of an under-construction path (black solid line).

In this case, the 100% success rate can still be achieved

within 500 MCTS iterations. The average wirelength is 107.37

grid units for all the test circuits, shorter than that (141.52 for

all) with 90-degree bends. Fig. 6 shows an example routing of

our approach on one randomly generated circuit in different

scenarios. It successfully connects all nets and the wirelength

in 45-degree bend case is 24% shorter than that in 90-degree

bend case for this circuit. Therefore, our approach can cope

with the change on the bend angle by changing the settings

of observations, states, actions, and state transitions.

4 1
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5 4

(a) In 90-degree bends.
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(b) In 45-degree bends.

Fig. 6: Routing results of our approach on a generated circuit.

Based on the results above, our approach can solve cir-

cuit routing problems that have different constraints. To deal

with an unseen problem with new constraints, only the DRL

problem settings and hyperparameters, such as observations,

actions, and network structure, need to be changed while the

algorithm remains the same.

V. CONCLUSIONS

In this paper, we propose an end-to-end solution to circuit

routing by combining deep reinforcement learning (DRL) and

Monte Carlo tree search (MCTS). Specifically, we develop a

DRL-based backtracking mechanism to reduce the research

space and a path pruning method to reduce the wirelength.

This approach can be easily implemented and adapted to

nearly any design constraints and goals without changing the

algorithm itself. Experimental results show that our approach

can solve problems that baselines cannot.
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